Structure preserving Stochastic Impulse Methods for stiff Langevin systems with a uniform global error of order 1 or 1/2 on position
نویسندگان
چکیده
Impulse methods are generalized to a family of integrators for Langevin systems with quadratic stiff potentials and arbitrary soft potentials. Uniform error bounds (independent from stiff parameters) are obtained on integrated positions allowing for coarse integration steps. The resulting integrators are explicit and structure preserving (quasi-symplectic for Langevin systems).
منابع مشابه
On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملImproved Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential Equations
An improved stabilized multilevel Monte Carlo (MLMC) method is introduced for stiff stochastic differential equations in the mean square sense. Using S-ROCK2 with weak order 2 on the finest time grid and S-ROCK1 (weak order 1) on the other levels reduces the bias while preserving all the stability features of the stabilized MLMC approach. Numerical experiments illustrate the theoretical findings.
متن کاملOn Exact Convergence Rate of Strong Numerical Schemes for Stochastic Differential Equations
We propose a simple and intuitive method to derive the exact convergence rate of global L2-norm error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and Müller-Gronbach (2004). We conclude that any strong numerical scheme of order γ > 1/2 has the same optimal convergence rate for this error. The method clearly reveals the...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کامل